
www.manaraa.com

Work organization and software development

Citation for published version (APA):
Rauterberg, G. W. M., & Strohm, O. (1992). Work organization and software development. In P. Elzer, & V.
Haase (Eds.), Experience With the Management of Software Projects 1992 : proceedings of the Fourth
IFAC/IFIP Workshop (pp. 121-128). (Annual Review in Automatic Programming; Vol. 16). Oxford: Pergamon.

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

Download date: 18. Jan. 2020

https://research.tue.nl/en/publications/work-organization-and-software-development(3295a822-8b6f-4092-9f28-e63b64bddaea).html

www.manaraa.com

Annual Review of Automatic Programming Vol. 16, pp. 121-128, 1992 0066-4138/92/$15.00
Printed in Great Britain. All rights reserved. © Pergamon Press Ltd

WORK ORGANIZATION AND SOFTWARE DEVELOPMENT

M. RAUTERBERG and O. STROHM

Work and Organizational Psychology Unit, Swiss Federal Institute of Technology (ETH) Nelkenstrasse 11; CH-8092
Zürich; Switzerland

Abstract
The current state of traditional software development
is surveyed and essential problems are investigated
on the basis of empirical data and theoretical
considerations. The concept of optimisation cycle is
proposed as a solution. The relation of several dif-
ferent kinds of local optimisation cycles to the spe-
cifications, the communications, and the optimi-
sation problem is integrated into a concept of
participatory software development. Software
development without integrated work and/or task
organizational development is suboptimal. User
participation and prototyping decrease significantly
cost and time exceedings. The more effort in early
development stages, the less effort in the
maintenance phase.

Keywords
software development, user participation, prototyp-
ing, iterative cyclic process model

1 . Introduction

Analysis of current software develop-
ment procedures brings to light a series of
weaknesses and problems, the sources of
which lie in the theoretical concepts applied,
the traditional procedures followed as well
as in the use of inadequate cost analysis mo-
dels. These point to the significance of parti-
cipation by all groups affected. Analysis of
these cases shows that there are three essen-
tial barriers to optimisation: the specification
barrier, the communication barrier and the
optimisation barrier. Speaking quite general-
ly, one of the most important problems lies
in coming to a shared understanding by all
the affected goups of the component of the
worksystem to be automated — that is to

say, to find the answers to the questions of
“if”, “where” and “how” for the planned im-
plementation of technology, to which a
shared commitment can be reached. An opti-
mal total system must integrate the social
and the technical subsystem simultaneously.

2 . Problems of Traditional
Software Development

In order to arrive at the optimal design
for the total working system, it is of para-
mount importance to regard the social sub-
system as a system in its own right, end-
owed with its own specific characteristics
and conditions, and a system to be optimi-
sed when coupled with the technical subsys-
tem. “Human resources are at the core of fu-
ture growth and Europe’s innovation capabi-
lity”4. The work task plays a central role in
this, being as it is the “interface” between
the organization and the individual.

In the context of the our research pro-
ject the general software development pro-
cesses of different software companies
(N=22) were analyzed as field studies by
document analysis and interviews. These
field studies were carried out in firms that
develop information systems for offices and
administration. Several other representative
software projects were analyzed only by
questionnaires (N=83). The analysis was
not only done with regard to technical as-
pects, but also with regard to work organi-
zation, use of methods, user participation
and the problems connected with different
procedures. The whole sample (N=105)
consisted of companies with internal soft-
ware development departments regarding to
software development activities alone
(74%), to banks or insurance business

www.manaraa.com

122 M. Rauterberg and O. Strohm

(15%), to industrial affairs (7%), or to other
issues (4%).

The central problems of all software
projects in our sample are organizational or
methodological aspects, strategical aspects,
technical aspects, social aspects, qualifica-
tional aspects, or other aspects16. The main
important topics are problems, which have
organizational or methodical causes. One
topic is the difficulty to define requirements,
because users are not participated in this
stage, the importance of this stage is under-
estimated and/or there is a lack of adequate
methods.

2 . 1 . The specification problem

The “specifications barrier” is a pro-
blem which is in the foreground even at a
cursory glance. How can the software de-
veloper ascertain that the client is able to
specifiy the requirements for the subsystem
to be developed in a complete and accurate
way which will not be modified while the
project is being carried out? The more for-
mal and detailed the medium used by the
client to formulate requirements, the easier it
is for the software developer to incorporate
these into an appropriate software system.
But this presumes that the client has com-
mand of a certain measure of expertise.
However, the client is not prepared to ac-
quire this before the beginning of the soft-
ware development process. It is therefore
necessary to find and implement other ways
and means, using from informal through se-
mi-formal to formal specification methods.
It would be a grave error with dire conse-
quences to assume that clients — usually
people from the middle and upper echelons
of management — are able to provide per-
tinent and adequate information on all requi-
rements for an interactive software system.

2 . 2 . The communication problem

The communications barrier between
applier, user and end-user on the one hand
and the software developer on the other is
essentially due to the fact that “technical in-
telligence” is only inadequately imbedded in
the social, historical and political contexts of
technological development8. Communica-
tion between those involved in the develop-
ment process can allow non-technical facts
to “slip through the conceptual net of speci-
alised technical language, which therefore
restricts the social character of the technolo-
gy to the functional and instrumental”8. Eve-
ry technical language not only dominates the

concrete process of communication in the
speciality concerned, but also determines the
cognitive structures underlying it. The appli-
cation-oriented jargon of the user flounders
on the technical jargon of the developer.
This “gap” can only be bridged to a limited
extent by purely linguistic means, because
the fact that their semantics is conceptually
bound makes the ideas applied insufficiently
sharp. To overcome this fuzziness requires
creating jointly experienced, perceptually
shared contexts. Beyond verbal communica-
tion, visual means are the ones best suited to
this purpose. The stronger the perceptual ex-
perience one has of the semantic context of
the other, the easier it is to overcome the
communications barrier.

2 . 3 . The optimisation problem

As a rule, software development is a
procedure for optimally designing a product
with interactive properties for supporting the
performance of work tasks. Software devel-
opment is increasingly focussing attention
on those facets of application-oriented soft-
ware which are unamenable to algorithmic
treatment. While the purely technical aspects
of a software product are best dealt with by
optimisation procedures attuned primarily to
a technical context, the non-technical context
of the application environment aimed at re-
quires the implementation of optimisation
procedures of a different nature. Optimisa-
tion means utilising all (even only limitedly
available) means within the context of an e-
conomical, technical and social process in
such a way that the best result is achieved
under the given constraints. It would be
false indeed to expect that at the outset of a
larger reorganization of a work system any
single group of persons could have a com-
plete, pertinent and comprehensive view of
the ideal for the work system to be set up.
Only during the analysis, evaluation and
planning processes can the people involved
develop an increasingly clear picture of what
it is that they are really striving for. This is
basically why the requirements of the applier
sometimes seem to “change” — they do not
really change but simply become concrete
within the anticipated boundaries. This pro-
cess of concretisation should be allowed to
unfold as completely, as pertinently and as
inexpensively as possible. Completeness
can be reached by making sure that each af-
fected group of persons is involved at least
through representatives. Iterative, interactive
progress makes the ideal concept increa-
singly concrete.

www.manaraa.com

M. Rauterberg and O. Strohm 123

3 . Analysis of Traditional Soft-
ware Development Processes

3 . 1 . The development process: an
overview

Software projects are often realized
with structured, linear stagemodels and de-
fined milestones. The different tasks of soft-
ware development can be assigned to the
following stages: problem analysis, concep-
tion, specification, programming, test and
implementation. The mean effort of each
stage is estimated by the percentual portion
to the whole project effort without the main-
tenance phase (see Figure 1).

0

5

10

15

20

25

30

35

problem
analysis

concep-
tion

specifi-
cation

program-
ming

test implemen-
tation

% stage effort

Figure 1: Mean effort in the different steps of soft-
ware development process (N=79)

3 . 2 . The early stages: analysis, con-
ception and specification

The early stages are frequently the
most neglected activities. This is essentially
due to the fact that methods and techniques
need to be used primarily the way occupati-
onal and organizational sciences have devel-
oped and applied them7. Inordinately high
costs incur from the troubleshooting re-
quired because the analysis was less than
optimal. The time has come to engage ocu-
pational and organizational scientists at the
analysis stage who have been specially
trained for optimal software development!
Introducing task orientation within the
framework of socio-technological system
conception makes the following conditions
indispensible17: 1. The employees must
have control over the work process as well
as the necessary means. 2. The structural
features of the task must be such as to re-
lease in the working person the energy for
completing or continuing the work. Task
planning is therefore the focus of attention in
the analysis phase. The five features “com-

pleteness”, “variety of tasks”, “opportunity
for social interaction”, “personal autonomy”
and “opportunity for learning and develop-
ment” must be striven for in order to suita-
bly plan the tasks17.

Once the analysis of the work system
to be optimised has been completed, the next
stage is to mould the results obtained into
implementable form. Methods of specifica-
tion with high communicative value are re-
commended here.

(1) The Specification of the Organizational
Interface: The first thing is to determine “if”
and “where” it makes sense to employ mo-
dern technology. Although the view is still
widely held that it is possible to use techno-
logy to eliminate the deficiencies of an orga-
nization without questioning the structures
of the organization as a whole, the conclu-
sion is nevertheless usually a false one. It is
important to understand the work system as
a living organization, as a self-sustaining or-
ganism, which must develop and change in
order to reach the organizational aims. The
purpose of defining the organizational inter-
face, from this point of view, is to improve
the viability of the organization with the help
of modern technology. An unavoidable con-
sequence is, that the necessary measures
must be taken in such a way that the ease
with which the employees can assimilate and
adapt to the type of the organization is maxi-
mised. The effects of the organizational
measures taken can be assessed, for exam-
ple, by means of the “Activity Evaluation
System”17 or “Activity Evaluation System
for ‘Intellectual Work’.”17.

(2) Specification of the Tool Interface: The
intended division of functions between man
and machine is decided during the specifica-
tion of the tool interface. The tasks which
remain in human hands must have the fol-
lowing characteristics18: 1. sufficient free-
dom of action and decision-making; 2. ad-
equate time available; 3. sufficient physical
activity; 4. concrete contact with material
and social conditions at the workplace activi-
ties; 5. actual use of a variety of the senses;
6. opportunities for variety when executing
tasks; 7. task related communication and im-
mediate interpersonal contact.

(3) Specification of the Input/Output Inter-
face: Once those concerned are sufficiently
clear about which functions are amenable to
automation, the next step which should be
taken is to test the screen layout on the end-

www.manaraa.com

124 M. Rauterberg and O. Strohm

users with the extremely inexpensive hand-
drawn sketches. The use of prototyping
tools is frequently inadvisable, because tool-
specific presentation offers a too restrictive
range of possibilities. The effect of the de-
sign decisions taken can be assessed with
the help of discussion with the end-users, or
by means of checklists.

(4) Specification of the Dialogue-Interface:
The use of prototypes to illustrate the dyna-
mical and interactive aspects of the tools be-
ing developed is indispensible for specifying
the dialogue interface. But prototypes
should only be used very purposefully and
selectively to clarify special aspects of the
specification, and not indiscriminately.
Otherwise there looms the inescapable dan-
ger of investing too much in the production
and maintenance of “display goods”. A very
efficient and inexpensive variation is provi-
ded by simulation studies, for example, with
the use of hand prepared transparencies,
cards, etc. which appear before the user in
response to the action taken6.

More and more companies try to prac-
tice user participation in the software devel-
opment process. Statements of software en-
gineers like "we must participate the users"
or "without users it does not work" and the
selection of the users for the participation in
the project with regard to their professional
background show, that user participation as
one necessity becomes more and more ac-
cepted. First of all this concerns to projects
in which the system implementation is com-
bined with greater organizational changes of
the work system.

We differentiate user participation into
three categories: active or passive participa-
tion, or without any participation. Further
and more detailed analysis of our data15,16

show the following results. In 29% of the
projects (N=83) active user participation
was practiced. This means, that the users
had have decision possibilities, were fre-
quently asked to problems of task design,
functionality, dialogue design, etc., and
were involved in the early stages. In 57% of
the projects a passive form of user partici-
pation was practiced. This means, that the
users gave informations, evaluated the ideas
of the software engineers, but did not be so
deeply involved in the early stages. 14% of
all projects were realized without any kind
of user participation.

Software developer put prototyping as
one useroriented method more and more into

practice. The prototyping method was used
in 55% of the projects (N=83). Of all pro-
jects with prototyping (N=46) the most soft-
ware engineers evaluate this procedure as
"very useful" (59%) or "useful" (33%).
These software engineers say, that prototyp-
ing is first of all a good method to support
the cooperation and communication with the
users.

% cost-exceedings

0

10

20

30

40

60

70

80

90

100

50

active
(N=18)

passive
(N=33)

no
(N=8)

p≤0.03

p≤0.08

user participation

Figure 2: The relation of cost exceedings with user
participation; "cost exceeding" is the percentual cost
portion of total project budget.

% time-exceedings

0

10

20

30

40

60

70

80

90

100

50

active
(N=21)

passive
(N=36)

user participation

no
(N=9)

p≤0.02 p≤0.04

Figure 3: The relation of time exceedings with user
participation; "time exceeding" is the percentual elon-
gation part of the total project time.

Active user participation decrease sig-
nificantly the cost exceeding portions (active
vs. no p≤0.03, one-tail T-test; N=59; see

www.manaraa.com

M. Rauterberg and O. Strohm 125

Figure 2), as well as the time exceedings
portion (active vs. no p≤0.02, one-tail T-
test; N=59; see Figure 3). The usage of pro-
totyping decrease significantly cost excee-
dings (p≤0.04, one-tail T-test; N=59; see
Figure 4), as well as time exceedings (p≤
0.05, one-tail T-test; N=66; see Figure 5).

0

10

20

30

40

60

70

80

90

100

50

yes
(N=31)

prototyping

no
(N=28)

p≤0.04

% cost-exceedings

Figure 3: The relation of cost exceedings with proto-
typing; "cost exceeding" is the percentual cost portion
of total project budget.

% time-exceedings

0

10

20

30

40

60

70

80

90

100

50

yes
(N=35)

prototyping

no
(N=31)

p≤0.05

Figure 5: The relation of time exceedings with proto-
typing; "time exceeding" is the percentual elongation
part of the total project time.

Figure 2, 3, 4 and 5 show, that there
are significantly advantages in projects with
active user participation and with usage of
prototyping. We can not find a significant
correlation between the category of user par-
ticipation ["active", "passive", "no"] and the

project size ["small": "≤5 man years", "big":
"≥6 man years"] (N=77; CHI2-Test, df=2,
p≤ 0.18); there is also no significant correla-
tion between prototyping ["yes", "no"] and
project size (N=77; CHI2-Test, df=1, p≤
0.84).

We distinguish between four project
types of software developments15: type A is
a customized software product by inhouse
development for a specific inhouse depart-
ment; type B is a customized software pro-
duct for external clients; type C is a trade
product for external companies; type D is
standard software for unknown users. There
is a significant correlation between project
type ["A","B","C","D"] and project size
["small": "≤5 man years", "big": "≥6 man
years"] (N=77; CHI2-Test, df= 3, p≤ 0.01).
Big projects are above average type A pro-
jects, and small projects of type B. Projects
of type C and D seem to be independent of
project size.

Active user participation seems to be
typically for project type A, passive user
participation for project type C and no parti-
cipation for project type B and D (N=83;
CHI2-Test, df=6, p≤ 0.07). Prototyping
["yes", "no"] does not correlate with project
type ["A","B","C","D"] (N=83; CHI2-Test,
df=2, p≤ 0.41).

3 . 3 . The programming and imple-
mentation stages

The programming stage is made up of
the following three steps1: 1. design of the
programme architecture; 2. design of the in-
dividual programme modules (object clas-
ses, etc.); 3. coding and debugging. The
distinction between design and specification
is important. During specification, all rele-
vant properties of the technical subsystem
are defined as precisely as possible. In the
programming stage all care must be taken to
ensure that the technical subsystem being
developed has these properties to the great-
est possible extent. It is pure software ex-
pertise which is of primary importance here.
The implementation phase is characterized
by the the first tests of the software system
in the concrete working context.

Once a working version is available, it
can be put to test in usability studies (“use-
oriented benchmark tests”11) in concrete
working situations. This is the first place
where it is possible to clarify the problems
with the actual organizational and technical
environment. By contrast to laboratory stu-

www.manaraa.com

126 M. Rauterberg and O. Strohm

dies, field studies take into account the as-
pect of “ecological validity”6. Trials with
real work tasks make it possible to check
and assess the degree to which the planned
organizational ideal has been reached. Al-
though video is the data recording medium
preserving the most information, a combina-
tion of log-files and direct protocolling
makes a good compromise between perfor-
mance and economy.

3 . 4 . The maintenance phase

The mean effort for maintenance is
20% (N=55). 33% of the maintenance effort
is spent for debugging, 67% of the mainte-
nance effort therefore is needed for changing
the systems (e.g. changed requirements cau-
sed by users). The cumulated effort for the
early stages "problem analysis", "concept"
and "specification" correlates significantly
negative (r= –0.32, p<0.05, N=55) with the
effort for maintenance. This means, that ad-
equate effort in the early stages reduces the
often cost- and timeintensive repair and cor-
rection tasks in the maintenance phase (see
Figure 6).

0

5

10

15

20

25

high
"≥ 50%"
(N=15)

low
"≤ 30%"
(N=18)

medium
"49% – 31%"

(N=22)

% maintenance-effort
30

Figure 6 The relation of maintenance effort with cu-
mulated effort of early software development stages
"problem analysis", "conception" and "specification".

4 . An Iterative-Cyclic Software
Process Model

Sufficient empirical evidence has accu-
mulated by now to show that task and user
oriented procedures in software develop-
ment not only bring noticeable savings in

costs, but also significantly improve the
software produced1, 6, 10, 11, 14. How then,
can the problems mentioned above be sol-
ved?

4 . 1 . Embarking on the global opti-
misation cycle

The type of software to be developed
has proved to be one of the essential factors
governing software development. The glo-
bal optimisation cycle begins at Start-A of
Figure 7 when developing completely new
software and at Start-B in the case of further
development and refinement of existing soft-
ware. Different concept-specific local opti-
misation cycles are used to optimise specific
work tasks, depending on the particular type
of the project at hand. It is up to the project
management to settle on the actual procedure
and this decision is reflected in the develop-
ment form chosen.

4 . 2 . Global and local optimisation
cycles

The use of optimisation cycles in soft-
ware development procedures depends on
the following conditions being met10: “1. A
modified project management model, which
guarantees above all communication be-
tween those concerned and the developers.
2. Computer supported version and docu-
mentation management, which includes also
the results of evaluation and current criti-
cism. 3. Informing all those involved about
the project’s aims and the peculiarites of the
procedure, as well as training the employees
concerned. 4. The fundamental willingness
of the developers to produce incomplete
software and to accept critique of it. 5. The
expansion of the expertise of the developer
beyond purely data processing technology
as regards measures in work structuring. 6.
The use of a largely integrated software tool
environment, which supports the developer
in repeated preparation and modification of
the software. 7. The preparedness of all per-
sons involved to learn throughout the course
of the project.”

Even if we assume that all the condi-
tions listed are more or less fulfilled, there
still remains the question of how to actually
carry out the software development project.
In order to reach the goals of a work-orien-
ted design concept the first project phases
(requirements analysis and definition; Quad-
rant-I in Figure 7) should be replete with a
range of optimisation cycles.

www.manaraa.com

M. Rauterberg and O. Strohm 127

Simple and fast techniques for invol-
ving users are discussion groups with vari-
ous communication aids (metaplan, layout
sketches, “screen-dumps”, scenarios, etc.
14), questionnaires for determining the atti-
tudes, opinions and requirements of the
users, the “walk-through” technique, as well

as targeted interviews aimed at a concrete
analysis of the work environment. Very
sound simulation methods (e. g. scenarios,
“Wizard of Oz” studies) are available for de-
veloping completely new systems without
requiring any special hardware or software.

START A

Discussions, Work-Shops,
Division of Functions
between Humans, Global
Task Analysis

[End] User
Requirements

Human-Machine
Division of Functions,

Feasibility Studies

Provisional Definition
of Requirements

Production of
Simulations

Optimised
Definition of

Requirements

Detailed Task
Analyis

Preparation of Formal
Specifications

Prototypes for
- "Walk-Through",
- Explorative Studies

Provisional
Design

Module or
Object Oriented
Programming

Provisional
"Release"

Alpha-Test of
Correctness,
Performance, etc.

Running
Version

Benchmark Test
Beta Test

Deliverable
Version

Usability Test,

useroriented
Benchmark
Test

Operation and
Maintenance

"Final
Version"

Test
Results

Simulation

Evaluation of
Simulation

START B

Protocols

Formal
Specification

Statistics,
Interview
Results,

Assessment
Results

Detailed
Design

Specification

I : Analysis Quadrant

II : Specification Quadrant Programming Quadrant : III

Maintenance Quadrant : IV

Assessment
Results

"Bug"

Figure 7 Flow chart for a participatory software development model showing the local optimisation cycles within
and between individual quadrants (I - IV)3, 5.

www.manaraa.com

128 M. Rauterberg and O. Strohm

5 . Conclusion

One of the principal problems of tradi-
tional software development lies in the fact
that those who have been primarily involved
in software development to date have not
been willing to recognise that software de-
velopment is, in most cases, mainly a ques-
tion of task, job and/or organizational plan-
ning. Were software development to be ap-
proached from such a perspective, it would
be planned from the beginning to engage ex-
perts in occupational and organizational
planning in the process of software design.
The global optimisation cycle can be subdi-
vided into four regions: the region where re-
quirements are determined (Quadrant I), the
region of specification (Quadrant II), the re-
gion of implementation (Quadrant III) and
the region of application and maintenance
(Quadrant IV). An appropriate investment in
optimisation in Quadrants I and II not only
helps to reduce the total cost (development
costs and application costs), but also leads
to optimally adapted hardware and software
solutions. This is due to the fact that all sub-
sequent users are involved at least through
representatives, and can therefore incorpo-
rate their relevant knowledge into the design
of the work system. As more effort is ex-
pended on optimisation in the first qua-
drants, so less is needed in Quadrant IV.
But first and foremost, we must start lear-
ning to plan jointly technology, organization
and the application of human qualification.
Technology should be viewed as one way of
providing the opportunity to organise our
living and working environments in a man-
ner which is better suited to human needs.

Acknowledgements
The preparation of this paper was supported by the
BMFT (AuT programme) grant number 01 HK 706-0 as
part of the BOSS "User oriented Software Development
and Interface Design" research project.

References
1. B.W. Boehm, T. Gray, T. Seewaldt, "Prototyping

versus specifying: a multiproject experiment",
IEEE Transactions on SE 10(3), 224-236 (1981).

2. B.W. Boehm, "Software Engineering Econo-
mics", Englewood (1981).

3. B.W. Boehm, "A spiral model of software devel-
opment and enhancement", Computer (May) 61-
72 (1988).

4. C.E.C. Commission of the European Communi-
ties, "Science, Technology and Societies: Euro-
pean Priorities. Results and Recommendations of
the FAST II Programme", Summary Report. Di-

rectorate-General Science, Research and Develop-
ment, Brussels (1989).

5. J. Grudin, S.F. Ehrlich, R. Shriner, "Positioning
Human Factors in the User Interface Development
Chain", Proceedings of CHI + GI (Toronto, 5th -
9th April 1987). New York, 125-131 (1987).

6. C-M. Karat, "Cost-Benefit Analysis of Iterative
Usability Testing", Human-Computer Interaction
- INTERACT '90. (D. Diaper et al., ed.) Amster-
dam, 351-356 (1990).

7. L. Macaulay, C. Fowler, M. Kirby, A. Hutt,
"USTM: a new approach to requirements specifi-
cation", Interacting with Computers 2(1), 92-118
(1990).

8. M. Mai, "Sprache und Technik", Zeitschrift des
Vereins Deutscher Ingenieure für Maschinenbau
und Metallbearbeitung 132(7), 10-13 (1990).

9. J. Nielson, "Big paybacks from 'discount' usabili-
ty engineering", IEEE Software 7(3), 107-108
(1990).

10. H. Peschke, "Betroffenenorientierte Systement-
wicklung", Europäische Hochschulschriften Reihe
XLI Informatik Bd./Vol.1, Frankfurt Bern New
York (1986).

11. M. Rauterberg, "Benutzungsorientierte Bench-
mark-Tests: eine Methode zur Benutzerbeteiligung
bei Standardsoftwareentwicklungen", Reports of
the German Chapter of the ACM, vol. 33 "Soft-
ware-Ergonomie '91", (D. Ackermann and E.
Ulich, eds.) Stuttgart, 96-107 (1991).

12. M. Rauterberg, "Optimisation Cycle: a Concept
for Optimal Software Development", Cybernetics
and System Research, vol.1 (R. Trappl, ed.),
Singapore London, 279-286 (1992).

13. B. Schiemenz, "Kybernetik", Handwörterbuch
der Produktionswissenschaft (W. Kern, ed.), Stutt-
gart, 1022-1028 (1979).

14. P. Spinas, D. Ackermann, "Methods and Tools
for Software Development: Results of Case
Studies", Man-Computer Interaction Research
MACINTER-II, (F. Klix, N. Streitz, Y. Waern
and H. Wandke, eds.) Amsterdam, 511-521
(1989).

15. O. Strohm, "Arbeitsorganisation, Methodik und
Benutzerorientierung bei der Software-entwick-
lung", Software für die Arbeit von morgen, (M.
Frese, Chr. Kasten, C. Skarpelis and B. Zang-
Scheucher, eds.) Berlin Heidelberg New York,
431-441 (1991).

16. O. Strohm, E. Ulich, "Arbeitsteilung und Be-
nutzerorientierung bei der Software-Entwicklung",
Multidimensionales Software-Projektmanagement,
(F. Elzer, ed.) Hallbergmoos, 261-289 (1991)

17. E. Ulich, "Arbeitspsychologie", Stuttgart,
Poeschel (1991).

18. M. Zölch, H. Dunckel, "Erste Ergebnisse des
Einsatzes der 'Kontrastiven Aufgabenanalyse'",
Reports of the German Chapter of the ACM, Vol.
33 "Software-Ergonomie '91", (D. Ackermann and
E. Ulich, eds.) Stuttgart, 363-372 (1991).

www.manaraa.com

Annual Review in Automatic Programming

Volume 16, Part II

EXPERIENCE WITH THE MANAGEMENT OF
SOFTWARE PROJECTS 1992

Proceedings of the Fourth IFAC/IFIP Workshop, Schloss Seggau, Austria, 18–20 MAy 1992

Edited by

P. ELZER
Technical University of Clausthal, Institute for Process and Production Control, Leibnitzstraße

28, 3392 Clausthal-Zellerfeld, Germany

and

V. HAASE
Institutes for Information Processing, Graz University of Technology

A-8010 Graz, Austria

Published for the

INTERNATIONAL FEDERATION OF AUTOMATIC CONTROL

by

1992
PERGAMON PRESS

OXFORD • NEW YORK • SEOUL • TOKYO

[ISSN 0079-1946]

